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Abstract (1/2)

Two well-known issues arise when attempting to solve equations for magnetized plasmas that are
accurate for both large scale magnetohydrodynamics (MHD) and for small scale microturbulence:
the “electrostatic Alfven wave problem” and the “Ampere cancellation problem.” These issues must
be solved for kinetic simulations in order to treat electron physics both accurately and efficiently.
For example, recent ELM simulations [1] achieved longer time steps by eliminating the
electrostatic Alfven wave in a physically inspired, but ad hoc manner. In this work, it is
demonstrated that these two issues are related and can be addressed by using the generalized
Ohm’s law, by including both electron inertia and the inductive electric field.

The “electrostatic Alfven wave problem” arises when one assumes that the scales of interest are
short wavelength. This assumption typically allows one to take the electrostatic limit E = −∇Φ
and neglect the inductive electric field. However, the inductive electric field −∂tA must be retained
whenever the perpendicular scale lengths are larger than the plasma skin depth. The issue is that
the skin depth is small and is typically similar in magnitude to the gyroradius. Hence, the
electrostatic assumption is invalid for meso- and macro-scale phenomena, such as MHD. The
penalty for this incorrect assumption is an incorrect dispersion relation for the shear Alfvén wave
that has a frequency that grows without bound at long perpendicular wavelengths. When using an
explicit time integration strategy, this would impose a very stringent Courant-Freidrichs-Lewy (CFL)
criterion.
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Abstract (2/2)

The “Ampere cancellation problem” appears when one attempts to use Ampere’s law rather than
Ohm’s law in order to determine the magnetic field. For spatial scales shorter than the plasma skin
depth, the magnetostatic assumption is valid and Ampere’s law can be used. However, for longer
spatial scales, the plasma is almost an ideal conductor. This yields a strong constraint that the
electric field must nearly cancel the sum of all of the other forces that the electrons experience.
Hence the name “cancellation problem.” Typically, the cancellation occurs between the parallel
electric field and the parallel electron pressure gradient. A kinetic simulation that uses the
generalized Ohm’s law to determine the inductive electric field naturally provides the cancellation
required to solve these problems. Solving Ohm’s law provides an update for the vector potential
that interpolates between the short and long wavelength limits. Inserting this electric field into the
kinetic equation provides the needed cancelation between forces at long wavelength.
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Outline

• Motivation: Electrostatic Alfvén Wave Problem

• Quasineutraity & “Poisson Cancellation” Problem

• Electrostatic Shear Alfvén Wave Problem

• Ampere Cancellation Problem

• Conclusion
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Electrostatic Shear Alfvén Wave (ES-AW) Problem

• ES-AW can be derived from the vorticity & electron force balance eqs.

∂t~∇ ·
mini
B2

~∇⊥φ = ~∇ · J‖b̂

∂tJ‖ = −e2neE‖/me = e2ne∇‖φ/me

• ES-AW dispersion relation is singular for k⊥/k‖ → 0

ω = k‖VTe/k⊥ρi = k‖Va/k⊥λp.

• If we include the inductive electric field ...
∇2
⊥A‖ = µ0J‖

∂tJ‖ − e2ne∂tA‖/me = e2ne∇‖φ/me

• ... then the skin depth λp = c/ωp controls the limit

ω = k‖Va/
[
1 + (k⊥λp)

2
]1/2

• Conclusion: the electrostatic assumption is invalid in the long
wavelength k⊥λp < 1 regime and ∂tA‖ must be retained
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Quasineutrality Constraint

• Quasineutrality is the assumption that the charge density is much
smaller than the particle density, and hence, that

∂tρ = −~∇ · ~J � |∇iJj |

• The quasineutrality (QN) constraint is

∂tρ = −~∇ · ~J = 0 ∂t~∇ · ~J = ~∇ · ∂t ~J = 0

• QN2 implies the charge/mass-weighted sum of the forces vanishes

~∇ · ∂t ~J = −
∑
j

ej ~Fj/mj = 0 ~∇ · ε0Ω2
p
~E = −

∑
j

~∇ · ej ~F ′j/mj

• Plasma frequency Ω2
pj = e2jnj/ε0mj and total plasma frequency Ω2

p =
∑

j Ω2
pj

• Force density ~Fj = ejnj
~E −∇ · Pj + . . .

• Force density without electric force ~F ′j = ~Fj − ejnj
~E
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Maxwell’s Equations and the Generalized Ohm’s Law

• Maxwell’s Eqs.

∂t ~B = −~∇× ~E ∂tε0 ~E = ~∇× ~B/µ0 − ~J

• Combining Maxwell’s Eqs. leads to the generalized Ohm’s law

∂2t ε0
~E + ~∇× ~∇× ~E/µ0 = −∂t ~J = −

∑
j

ejnj ~Fj/mj

• The full equation that determines ~E is

∂2t ε0 ~E + ~∇× ~∇× ~E/µ0 + ω2
pε0 ~E +

∑
j

~Jj × ~Ωcj = −
∑
j

ejnj ~fj/mj

• Larmor frequency Ωcj = ej ~B/mj

• Force density ~Fj = ejnj
~E −∇ · Pj + . . .

• Force density without Lorentz force ~fj = ~Fj − ejnj( ~E + ~vj × ~B)
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Enforcing Quasineutrality for Unmagnetized Ohm’s Law

• Eliminate light wave and plasma wave by assuming ω/kc� 1

~∇× ~∇× ~E/µ0 + ω2
pε0 ~E '

∑
j

ej∇ · Pj/mj

~E =
1

ω2
p(1 + k2⊥λ

2
p)

∑
j

ej∇ · Pj
ε0mj

' −1

(1 + k2⊥λ
2
p)

∇ · Pe
ene

• Insert into electron kinetic equation

∂tfe + ~∇x · ~vfe − ~∇v · e ~Efe/me = 0

∂tfe + ~∇x · ~vfe + ~∇v · (∇ · Pe)fe/mene(1 + k2⊥λ
2
p) = 0

• Electron continuity & momentum = Generalized Ohm’s law

∂tne +∇ · neve‖b̂ = 0 ∂tmene~ve +
k2⊥λ

2
p

1 + k2⊥λ
2
p

(∇ · Pe) = 0.

• Disp. rel. for electron density waves now requires k‖k⊥ 6= 0

ω2 = k2‖VTe
2 × k2⊥λ2p/

[
1 + k2⊥λ

2
p

]
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Magnetized Parallel Ohm’s Law

• Parallel Ohm’s law
~∇2
⊥E‖/µ0 + ω2

pε0E‖ '
∑
j

ej∇‖Pj/mj

E‖ =
1

ω2
p(1 + k2⊥λ

2
p)

∑
j

ej(∇ · Pj)‖
ε0mj

' −1

(1 + k2⊥λ
2
p)

(∇ · Pe)‖
ene

• Insert into electron gyro-kinetic equation F = fB∗‖

∂tFe + ~∇x · (v‖b̂+ ~vd)Fe − ∂v‖eE‖Fe/me = 0

∂tFe + ~∇x · (v‖b̂+ ~vd)Fe + ∂v‖(∇ · Pe)‖Fe/mene(1 + k2⊥λ
2
p) = 0

• Electron continuity & momentum = Generalized Ohm’s law

∂tne +∇ · neve‖b̂ = 0 ∂tmeneve‖ +
k2⊥λ

2
p

1 + k2⊥λ
2
p

(∇ · Pe)‖ = 0.

• Disp. rel. for electron density waves similar to unmagnetized case

ω2 = k2‖VTe
2 × k2⊥λ2p/

[
1 + k2⊥λ

2
p

]
.
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Magnetized Perpendicular Ohm’s Law→ Vorticity Eq.

• ~E⊥ is still electrostatic ∂t ~A⊥ � ∇⊥φ
• Use total force balance to determine perpendicular current

∂t

(
~B × µ0

V 2
a

~∇⊥φ
)

+∇ · P = ~J × ~B.

• Aflvén speed V −2
a =

∑
j µ0mjnj/B

2

• Total pressure P =
∑

j Pj

• Now quasineutrality ~∇ · ~J = 0→ Vorticity Eq.

~J = J‖b̂+
b̂

B
×
(
∇P − ∂t ~B ×

µ0

V 2
a

~∇⊥φ
)

∂t~∇⊥ ·
µ0

V 2
a

~∇⊥φ = ~∇ · J‖b̂+ ~∇ · b̂
B2
×∇ · P

• Combining with parallel Ohm’s law leads to correct shear Alfvén
wave dispersion relation[

1 + k2⊥λ
2
p

]
∂tA‖ = −∇‖φ+ . . .

ω2 = k2‖V
2
a /
[
1 + k2⊥λ

2
p

]
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Conclusions

• Electrostatic Alfvén wave problem can be solved by including
inductive electric field ∂t ~A
• Electrostatic assumption invalid for wavelengths longer than the skin depth k⊥λp < 1

• Ampere cancellation problem can be solved by using generalized
Ohm’s law instead of Ampere’s law
• Solution: Solve generalized Ohm’s law for ~E and insert into the kinetic equation

• Still, one must ensure numerically accurate “cancellation” b/w
electric field & electron pressure

(∇ · Pe)‖ + eneE‖ '
λ2pk

2
⊥

(1 + λ2pk
2
⊥)

(∇ · Pe)‖
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